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When a muffler is modelled by the boundary element method (BEM), the
transmission loss (TL) can be evaluated by either the conventional four-pole
method or the recently developed three-point method. The three-point method
produces only the transmission loss (TL), and nothing else. On the other hand,
the four-pole method has the advantage of retaining the transfer matrix of the
muffler, which contains important parameters when the muffler is connected to
another muffler or other components in the exhaust system. However, the major
drawback of the conventional four-pole method is that it requires two separate
boundary element runs due to the two different boundary conditions imposed on
the outlet boundary. Therefore, it can take twice as long to get the TL when
compared to the more efficient three-point method. In this paper, an improved
method to derive the four-pole parameters for use in the BEM is introduced.
Although two boundary element runs are still needed at each frequency, the
improved method only solves the boundary element matrix once at each
frequency. Therefore, it is as efficient as the three-point method. More
importantly, the improved method also produces the four-pole parameters. The
boundary element analysis is done by the direct mixed-body BEM. Numerical
predictions are compared to experimental results for all test cases, including one
with a mean flow effect.
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1. INTRODUCTION

Muffler performance prediction is a good example of using the boundary element
method (BEM) in industrial applications. Although the interior acoustic domain
of a muffler is finite, the geometry inside the muffler can be quite complicated.
Internal components inside a typical muffler may include perforated tubes, thin
bafflers, branched cavities, and extended inlet/outlet tubes. Modelling the complex
interior acoustic domain using the three-dimensional finite elements can be a very
demanding job for engineers. On the other hand, the BEM provides an easier
design tool because only the surfaces need to be modelled. In a recent paper, Wu
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and Wan [1] proposed a direct mixed-body BEM to model mufflers with complex
internal geometry. In the direct mixed-body BEM, the surface of each component
is classified as either a regular, or a thin, or a perforated surface. The regular
surfaces include the exterior muffler chamber, the inlet/outlet tubes, and the
inlet/outlet ends. The thin surfaces are the thin-wall components inside the muffler,
such as the extended inlet/outlet tubes, thin baffles, flow plugs (disks), and internal
connecting tubes. The perforated surfaces are designated for perforated tubes or
any internal surfaces with perforation. Unlike the multi-domain BEM [2–5], the
direct mixed-body BEM is a single-domain BEM and requires no tedious
sub-domain definition and interface matching.

Another important feature of the direct mixed-body BEM is that it allows the
use of discontinuous elements. Nodal variables can be defined inside each element,
instead of on the edges of each element. Therefore, continuity at the junction of
any two connecting components is not required. This means each component can
be meshed independently and assembled into a model without worrying about the
continuity of nodal variables at junctions. In addition, the mesh of each
component may also be automatically refined as the frequency goes up. A virtual
component library can then be formed, and muffler models can be assembled by
using the components in the library.

Traditionally, the transmission loss (TL) of a muffler has been evaluated by the
four-pole method [6, 7]. The four-pole method requires two separate boundary
element runs at each frequency due to the two different boundary conditions
imposed on the outlet boundary [2–5]. The first BEM run uses a zero-velocity
boundary condition at the outlet, and the second BEM run switches to the
zero-pressure outlet condition. Because of the two different types of boundary
conditions, the boundary element matrix for each run is different and needs to be
solved separately. This approach is apparently too time consuming. To speed up
the TL calculation process, Wan [8] proposed a so-called ‘‘three-point method’’
(also in reference [1]) to evaluate directly the TL from sound pressures in the inlet
and outlet tubes. The three-point method requires only one BEM run at each
frequency, and hence is much faster than the four-pole method. However, unlike
the four-pole method, the three-point method does not produce the four-pole
transfer matrix. The four-pole transfer matrix contains important parameters
when the muffler is connected to another muffler or other components in the
exhaust system. Under some circumstances, the four-pole method may also be
used to reduce the size of the problem as well as the total CPU time when a large
complex muffler is divided into two or more sub-mufflers.

To overcome the shortcomings of both the four-pole method and the three-point
method, an improved method for deriving the four-pole parameters is proposed.
This improved method simply permutes the variables used in the conventional
four-pole method in such a way that only one single BEM matrix needs to be
solved at each frequency. As a consequence, the improved method is as fast as the
three-point method in evaluating the TL. More importantly, it also produces the
four-pole transfer matrix. In fact, this improved four-pole formulation was first
proposed and used by Kim and Soedel [9–11] in a model expansion method for
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three-dimensional cavity problems, although the numerical benefit of this method
in the BEM was not recognized then.

For perforated tubes, a simple empirical formula for the transfer impedance
proposed by Sullivan and Crocker [12] has been used in many recent BEM
calculations [1, 3, 4]. This simple formula uses only frequency and porosity as the
variables. In this paper, a few other empirical formulas that include the effects of
wall thickness, orifice diameter, and the mean-flow Mach number [7, 13] are also
tested. All the BEM predictions are compared to experimental results, including
one with a mean flow effect.

2. DIRECT MIXED-BODY BEM

In this section, the direct mixed-body boundary integral formulation by Wu and
Wan [1] is briefly reviewed. Let Sr , St , and Sp denote the regular, thin and
perforated surfaces, respectively. The interior acoustic domain is denoted by V.
Let n be the unit normal vector. The unit normal vector on Sr is directed into the
interior acoustic domain. The unit normal vector on Sp and St can be directed into
either side of the thin/perforated surface. The side into which n is directed is called
the positive side.

Let p denote the sound pressure, and vn denote the normal velocity of the
surface. The e+ivt convention in steady-state linear acoustics is adopted, where
i=z−1 and v is the angular frequency. The direct mixed-body boundary
integral equations are

gSt +Sp

1c

1n
(p+ − p−) dS+gSr

0p 1v

1n
+irvvnc1 dS

= 8 4pp(P),
2pp(P),

2p[p+(P)+ p−(P)],

P$V,
P$Sr ,

P$St +Sp ,9 (1a–c)

gSt +Sp

12c

1n 1nP (p+ − p−) dS+gSr
0p 12v

1n 1nP +irvvn
1c

1nP1 dS

=6 −4pirvvn (P),
4p(ik/j)[p+(P)− p−(P),

P$St ,
P$Sp ,7 (2a–b)

where P is the collocation point, c is the free-space Green’s function, r is the mean
density of the fluid, k is the wavenumber, and j is the non-dimensional transfer
impedance for the perforated surface Sp . In the above equations, p+ is the sound
pressure on the positive side of St or Sp , and p− is the sound pressure on the
opposite side. The explicit expression for c is

c=e−ikr/r, (3)
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where r= =P−Q=, and Q is any integration point on the boundary. In equation
(2), 1/1nP means partial differentiation with respect to the co-ordinates of P in the
normal direction of P. It should be noted that the first integral of equation (2)
is hypersingular and converges only in the Hadamard finite-part sense [14]. The
hypersingular integral can be regularized by using Stokes’ theorem [15]. Equations
(1b), (2a) and (2b) are solved simultaneously for pressure on Sr , and pressure jump
on St and Sp .

In equation (2b), the perforated surface is modelled by the equivalent transfer
impedance approach [12]. In other words, the normal velocity on Sp is related to
the pressure jump by

p− − p+ = rcjvn . (4)

At room temperature and under the no-flow condition, a simple empirical formula
given by Sullivan and Crocker [12] for j in the linear regime is

j=(1/rcs)(2·4+ i0·02f), (5)

where f is frequency in Hz, and s is the porosity (the open to the total area ratio).
Equation (5) is easy to use because it contains only f and s as the variables.

Sullivan has also developed a more detailed formula that includes the effects of
hole diameter and wall thickness. The formula can be found in the book by Munjal
[7]:

j=(1/s)[6×10−3 + ik(t+0·75dh )], (6)

where k is the wavenumber, t is the wall thickness of the perforated surface, and
dh is the hole diameter.

Another alternative formula that also includes the effects of hole diameter and
wall thickness was reported by Bento Coelho [13]. The formula is

j=(1/rc)(R0 + iX0), R0 = (1/s)[r(d'/dh )z8nv+(r/8c)(vdh )2], (7a, b)

X0 = (vr/s)(d0+(d'/dh )z8n/v), (7c)

with

d'= t+ dh , d0= t+(8/3p)dh (1−0·7zs), (7d, e)

where n is the gas kinematic viscosity, and v=2pf.
Equations (5–7) are for stationary acoustic media only. For perforates with a

cross flow (or through flow), Sullivan developed a formula which can also be found
in the book by Munjal [7]:

j=(1/s)[0·514d1M/ls+i0·95k(t+0·75dh )], (8)

where d1 is the diameter of the perforated tube, l is the length of the perforate tube,
and M is the mean-flow Mach number in the tube.

For perforates with a grazing flow, Rao and Munjal [16] gave the following
empirical formula:

j=(1/s)[7·337×10−3(1+72·23M)+ i2·2245×10−5f(1+51t)(1+204dh )].
(9)
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Bento Coelho also developed an alternative formula for perforates with a grazing
flow. That formula can be found in reference [13].

3. CONVENTIONAL FOUR-POLE METHOD

The TL of a muffler element can be computed by using the transfer matrix
approach [6, 7]. With reference to Figure 1, a muffler with an inlet and an outlet
can be represented by a linear acoustic four-pole network:

$p1

v1%=$AC B
D%$ p2

−v2%, (10)

where the p1 and v1 are the sound pressure and normal particle velocity,
respectively, at the inlet, and p2 and v2 are the corresponding quantities at the
outlet. A negative sign on v2 is added because the normal vector at the outlet on
the BEM model is opposite to the normal at the inlet. The four-pole parameters,
A, B, C, and D, can be obtained from

A= p1/p2=v2 =0, v1 =1, B= p1/−v2=p2 =0, v1 =1, (11a, b)

C= v1/p2=v2 =0, v1 =1, D= v1/−v2=p2 =0, v1 =1. (11c, d)

Note that the velocity boundary condition at the inlet (v1 =1) in equations (11a–d)
may also be replaced by a pressure boundary condition (p1 =1). Two separate
BEM runs are required to obtain the four-pole parameters at each frequency. In
the first BEM run, a zero-velocity boundary condition is applied to the outlet end
(i.e., v2 =0). This will produce parameters A and C. In the second BEM run, the
sound pressure at the outlet end is set to zero (i.e., p2 =0). This will produce the
remaining two parameters, B and D. With the four-pole parameters, A, B, C, and
D, available, the TL of the muffler can then be evaluated by

TL=20 log10 {1
2=A+B(1/rc)+Crc+D=}+10 log10 Si /So , (12)

where Si and So are the cross-sectional areas of the inlet and oulet tubes,
respectively.

Because of the two different types of boundary conditions applied at the outlet,
the two BEM runs do not share the same cofficient matrix. That means the matrix
solver needs to be called twice at each frequency. This simply makes the
conventional four-pole method an impractical choice for computing the TL.

Figure 1. The four-pole method.
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Figure 2. The three-point method.

4. THREE-POINT METHOD

Unlike the four-pole method, the three-point method [1, 8] uses only one single
BEM run to compute the TL at each frequency. In this single BEM run, the inlet
is still excited by a uniform velocity or pressure, while an anechoic termination
(impedance equal to rc) is used at the outlet end, as shown in Figure 2. The
acoustic wave in the outlet tube contains only an outgoing wave due to the
anechoic termination. The acoustic wave in the inlet tube contains an incoming
wave as well as a reflected wave. Two points in the inlet tube are selected to extract
the incoming wave. Let x1 and x2 be the longitudinal co-ordinates of the two
selected points along the muffler axis, respectively. The corresponding sound
pressures p1 and p2 at these two points can be written as

p1 = pi e−ikx1 + pr eikx1, p2 = pi e−ikx2 + pr eikx2, (13a, b)

where pi represents the incoming wave, and pr represents the reflected wave.
Solving equations (13a) and (13b) for pi gives

pi =(1/2i sin [k(x2 − x1)])(p1 eikx2 − p2 eikx1), (14)

provided that sin [k(x2 − x1)]$ 0. As shown in Figure 2, the third point can be
placed anywhere in the outlet tube. The pressure at that point is p3. Then, the TL
of the muffler can be evaluated by

TL=20 log10 (=pi =/=p3=)+10 log10 (Si /So ). (15)

Compared to the four-pole method, the three-point method is indeed a much
faster method for computing the TL, due to its single BEM run nature. However,
the three-point method does not produce the four-pole transfer matrix. The
four-pole matrix represents important characteristics of the muffler, and can be
combined with other four-pole matrices when the muffler is connected to other
components in the exhaust system.

5. IMPROVED METHOD TO DERIVE THE FOUR POLE PARAMETERS

From the system point of view, the four-pole method is still a desirable method.
To speed up the conventional four-pole method, one can simply permute the
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variables used in the four-pole network in such a way that only the velocity
boundary condition is used in the BEM. Rearrange equation (10) to get

$p1

p2%=$A*
C*

B*
D*%$ v1

−v2%, (16)

where

A*= p1=v1 =1, v2 =0, B*= p1=v1 =0, v2 =−1, (17a, b)

C*= p2=v1 =1, v2 =0, D*= p2=v1 =0, v2 =−1. (17c, d)

Two BEM runs are still needed to get the above four parameters. The first BEM
run produces A* and C*, while the second BEM run produces B* and D*.
Nevertheless, only one BEM matrix needs to be solved at each frequency, because
the two BEM runs share the same coefficient matrix. The second BEM run uses
only a different velocity condition, and therefore, requires only a trivial
back-substitution procedure. Actually, the two BEM runs can be done
simultaneously because the two right side vectors corresponding to the two
different velocity boundary conditions may be formed at the same time. Compared
to the three-point method, this improved method is even faster because it does not
require any field-point solution

The original four-pole parameters in equations (10) can be obtained by solving
equation (16) for p1 and v1 in terms of p2 and v2. Doing so yields

A=A*/C*, B=B*−A*D*/C*, (18a, b)

C=1/C*, D=−D*/C*. (18c, d)

Note that the above equations are identical to the pressure response functions in
the papers by Kim and Soedel [9–11]. With the four-pole parameters available, the
TL can then be calculated by equation (12). The major advantage of the improved
method is that it not only provides a very fast method for computing the TL, but
it also produces the four-pole parameters.

6. NUMERICAL RESULTS

Two muffler models are presented in this section to demonstrate the BEM
analysis. The first example is a concentric tube resonator with a flow plug in the
middle of the perforated tube. The geometry of the muffler is axisymmetric. The
details of the model are shown in Figure 3. The internal tube contains both
perforated and thin surfaces. The porosity of the first region (L2) is 21·68%, and
the porosity of the second region (L5) is 13·54%. The internal portions where there
is no perforation are all modelled by thin elements (St ). All the three different
empirical formulas for perforated tubes under the no-flow condition (equations
(5–7)) are tested in the BEM. The three BEM predictions are compared to
experimental data. Figure 4 show the BEM prediction (dashed line) using the
Sullivan and Crocker’s formula (equation (5)). Also shown in the figure is the
experimental TL curve (solid line). From the figure, one can see that the BEM
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Figure 3. Concentric-tube muffler with a flow plug (L1 =0·0317 m, L2 =0·0952 m, L3 =0·0255 m,
L4 =0·0063 m, L5 =0·0952 m, L6 =0·0953 m, R=0·0538 m, r=0·0254 m). For perforations in L2:
s=0·2168, dh =0·00635 m, t=0·0011938 m; for perforations in L5: s=0·1354, dh =0·00635 m,
t=0·0011938 m.

prediction is fairly good except some minor shifts of the peaks. To see if
incorporating the effects of hole diameter and wall thickness can improve the
accuracy, the same model is run again twice with equations (6) and (7),
respectively. Figure 5 shows the two BEM predictions along with the experimental
TL curve (solid line). The dotted line in Figure 5 is obtained by using Sullivan’s
formula (equation (6)), and the dashed line is obtained by using Bento Coelho’s
formula (equation (7)). It is seen that either equation (6) or equation (7) gives
better prediction than equation (5) for this particular muffler model.

The same model is then run with a mean flow with Mach number M=0·1034.
Since the flow type is cross flow due to the flow plug inserted in the middle of the
internal tube, the cross-flow formula by Sullivan (equation (8)) is used in the BEM.
However, the convective-flow effect on acoustic wave propagation is totally
neglected in the BEM formulation due to the low Mach number. In other words,
the governing differentiation equation is still the Helmholtz equation, and the
mean flow only comes into effect in the transfer impedance formula for perforated
tubes.

Figure 4. Comparison between the experimental data (——) and the BEM prediction using
Sullivan and Crocker’s formula (equation (5), - - - - -) for the concentric-tube muffler with a flow plug.
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Figure 5. Comparison between the experimental data (——) and the BEM predictions using
Sullivan’s formula (equation (6), - - - - -) and Bento Coelho’s formula (equation (7), –––) for the
concentric-tube muffler with a flow plug.

Figure 6 shows the comparison between the BEM prediction (dashed line) and the
experimental TL curve (solid line). It is seen from the figure that equation (8) can
yield a decent result even when the convective-flow effect is neglected in the
acoustic wave equation.

The second muffler model is a muffler that has two parallel perforated tubes.
The details of the model are shown in Figure 7. This model is more complex than
the previous one because the geometry is not axisymmetric. Figure 8 shows the
BEM prediction (dashed line) using Sullivan and Crocker’s formula (equation (5))
along with the experimental TL curve (solid line). To see the effects of hole

Figure 6. Comparison between the experimental data (——) and the BEM prediction using
Sullivan’s cross-flow impedance formula (equation (8), –––) for the concentric-tube muffler with a
flow plug when M=0·1034.
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Figure 7. Muffler with two parallel perforated tubes (L1 =0·0254 m, L2 =0·4572 m,
L3 =0·0254 m, L4 =0·0381 m, L5 =0·0381 m, R=0·1016 m, r=0·0254 m). For both tubes:
s=0·144, dh =0·003175 m, t=0·0011938 m.

diameter and wall thickness, the results of using Sullivan’s formula (equation (6),
dotted line) and Bento Coelho’s formula (equation (7), dashed line) are shown in
Figure 9. From Figures 8 and 9, one can see that all BEM predictions show fairly
good comparison with the experimental curve, although either equation (6) or (7)
seems to give a better result than equation (5).

To demonstrate the efficiency of the improved method for deriving the four-pole
parameters, the CPU time comparison of the three different TL methods at three
individual frequencies is shown. The second muffler model is used as the test case.
Since the muffler has a plane of symmetry, one only models one half of the
geometry. At 20 Hz, 1000 Hz and 2000 Hz, the number of elements (or nodes) is
322, 469 and 961, respectively. The CPU time comparison on a Pentium 120
notebook computer is shown in Table 1. From the Table, one can see that the
improved four-pole method is even a little faster than the three-point method for
the 961-node model. Since the entire integral equation is not reformulated for the

Figure 8. Comparison between the experimental data (——) and the BEM prediction using
Sullivan and Crocker’s formula (equation (5), - - - - -) for the muffler with two parallel perforated
tubes.
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Figure 9. Comparison between the experimental data (——) and the BEM prediction using
Sullivan’s formula (equation (6), - - - - -) and Bento Coelho’s formula (equation (7), – – –) for the
muffler with two parallel perforated tubes.

T 1

CPU time (s) comparison of the three different TL methods on a
Pentium 120 PC

Four-pole Three-point Improved four-pole
Number of nodes method method method

322 85 63 63
469 201 145 146
961 1105 691 687

second BEM run even in the conventional four-pole method the CPU time of the
conventional four-pole method is not exactly twice of the three-point method or
the improved four-pole method. However, when the frequency goes up and the
size of the matrix becomes bigger and bigger, solving the matrix will dominate the
entire process. Then, the CPU time of either the three-point method or the
improved four-pole method will eventually reach 50% of the conventional
four-pole method.

7. CONCLUSIONS

An improved method for deriving the four-pole parameters is presented in this
paper to accelerate the TL prediction procedure using the BEM. This improved
method uses only the velocity boundary condition at the inlet and the outlet.
Although two BEM runs are still needed at each frequency, only one BEM matrix
needs to be solved. As a consequence, the improved method is as fast as the
three-point method. More importantly, it also produces the four-pole parameters.
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Several different transfer impedance formulas for perforated tubes are tested in
this paper. Test cases show that all formulas produce fairly good results when
compared to the experimental TL curve, although formulas incorporating the
effects of hole diameter and wall thickness (equations (6) and (7)) seem to yield
better accuracy than the original formula by Sullivan and Crocker (equation (5)).

One test case in this paper also includes a mean flow with M=0·1034. The
cross-flow impedance formula by Sullivan (equation (8)) is adopted in the BEM
to take the mean flow effect into account. However, the convective-flow effect is
not included in the acoustic wave equation. Even so, the BEM prediction shows
very good comparison with the experimental data.
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